Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 8(1): 17212, 2018 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-30464317

RESUMO

In Pseudomonas aeruginosa, SigX is an extra-cytoplasmic function σ factor that belongs to the cell wall stress response network. In previous studies, we made the puzzling observation that sigX mutant growth was severely affected in rich lysogeny broth (LB) but not in minimal medium. Here, through comparative transcriptomic and proteomic analysis, we show that the absence of SigX results in dysregulation of genes, whose products are mainly involved in transport, carbon and energy metabolisms. Production of most of these genes is controlled by carbon catabolite repression (CCR), a key regulatory system than ensures preferential carbon source uptake and utilization, substrate prioritization and metabolism. The strong CCR response elicited in LB was lowered in a sigX mutant, suggesting altered nutrient uptake. Since the absence of SigX affects membrane composition and fluidity, we suspected membrane changes to cause such phenotype. The detergent polysorbate 80 (PS80) can moderately destabilize the envelope resulting in non-specific increased nutrient intake. Remarkably, growth, membrane fluidity and expression of dysregulated genes in the sigX mutant strain were restored in LB supplemented with PS80. Altogether, these data suggest that SigX is indirectly involved in CCR regulation, possibly via its effects on membrane integrity and fluidity.


Assuntos
Proteínas de Bactérias/metabolismo , Carbono/metabolismo , Fluidez de Membrana , Pseudomonas aeruginosa/metabolismo , Fator sigma/metabolismo , Proteínas de Bactérias/genética , Transporte Biológico , Repressão Catabólica , Metabolismo Energético , Perfilação da Expressão Gênica , Regulação Bacteriana da Expressão Gênica , Proteoma/análise , Pseudomonas aeruginosa/genética , Fator sigma/deficiência
2.
Front Microbiol ; 6: 630, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26157434

RESUMO

OprF is the major outer membrane porin in bacteria belonging to the Pseudomonas genus. In previous studies, we have shown that OprF is required for full virulence expression of the opportunistic pathogen Pseudomonas aeruginosa. Here, we describe molecular insights on the nature of this relationship and report that the absence of OprF leads to increased biofilm formation and production of the Pel exopolysaccharide. Accordingly, the level of c-di-GMP, a key second messenger in biofilm control, is elevated in an oprF mutant. By decreasing c-di-GMP levels in this mutant, both biofilm formation and pel gene expression phenotypes were restored to wild-type levels. We further investigated the impact on two small RNAs, which are associated with the biofilm lifestyle, and found that expression of rsmZ but not of rsmY was increased in the oprF mutant and this occurs in a c-di-GMP-dependent manner. Finally, the extracytoplasmic function (ECF) sigma factors AlgU and SigX displayed higher activity levels in the oprF mutant. Two genes of the SigX regulon involved in c-di-GMP metabolism, PA1181 and adcA (PA4843), were up-regulated in the oprF mutant, partly explaining the increased c-di-GMP level. We hypothesized that the absence of OprF leads to a cell envelope stress that activates SigX and results in a c-di-GMP elevated level due to higher expression of adcA and PA1181. The c-di-GMP level can in turn stimulate Pel synthesis via increased rsmZ sRNA levels and pel mRNA, thus affecting Pel-dependent phenotypes such as cell aggregation and biofilm formation. This work highlights the connection between OprF and c-di-GMP regulatory networks, likely via SigX (ECF), on the regulation of biofilm phenotypes.

3.
PLoS One ; 8(11): e80407, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24260387

RESUMO

SigX, one of the 19 extra-cytoplasmic function sigma factors of P. aeruginosa, was only known to be involved in transcription of the gene encoding the major outer membrane protein OprF. We conducted a comparative transcriptomic study between the wildtype H103 strain and its sigX mutant PAOSX, which revealed a total of 307 differentially expressed genes that differed by more than 2 fold. Most dysregulated genes belonged to six functional classes, including the "chaperones and heat shock proteins", "antibiotic resistance and susceptibility", "energy metabolism", "protein secretion/export apparatus", and "secreted factors", and "motility and attachment" classes. In this latter class, the large majority of the affected genes were down-regulated in the sigX mutant. In agreement with the array data, the sigX mutant was shown to demonstrate substantially reduced motility, attachment to biotic and abiotic surfaces, and biofilm formation. In addition, virulence towards the nematode Caenorhabditis elegans was reduced in the sigX mutant, suggesting that SigX is involved in virulence-related phenotypes.


Assuntos
Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/fisiologia , Fator sigma/genética , Virulência/genética , Proteínas de Bactérias/genética , Biofilmes , Células CACO-2 , Linhagem Celular Tumoral , Citoplasma/genética , Metabolismo Energético/genética , Humanos , Mutação/genética , Transcrição Gênica/genética , Transcriptoma/genética , Fatores de Virulência/genética
4.
J Bacteriol ; 194(16): 4301-11, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22685281

RESUMO

The OprF porin is the major outer membrane protein of Pseudomonas aeruginosa. OprF is involved in several crucial functions, including cell structure, outer membrane permeability, environmental sensing, and virulence. The oprF gene is preceded by the sigX gene, which encodes the poorly studied extracytoplasmic function (ECF) sigma factor SigX. Three oprF promoters were previously identified. Two intertwined promoters dependent on σ(70) and SigX are located in the sigX-oprF intergenic region, whereas a promoter dependent on the ECF AlgU lies within the sigX gene. An additional promoter was found in the cmpX-sigX intergenic region. In this study, we dissected the contribution of each promoter region and of each sigma factor to oprF transcription using transcriptional fusions. In Luria-Bertani (LB) medium, the oprF-proximal region (sigX-oprF intergenic region) accounted for about 80% of the oprF transcription, whereas the AlgU-dependent promoter had marginal activity. Using the sigX mutant PAOSX, we observed that the SigX-dependent promoter was largely predominant over the σ(70)-dependent promoter. oprF transcription was increased in response to low NaCl or high sucrose concentrations, and this induced transcription was strongly impaired in the absence of SigX. The lack of OprF itself increased oprF transcription. Since these conditions led to cell wall alterations, oprF transcription could be activated by signals triggered by perturbation of the cell envelope.


Assuntos
Proteínas de Bactérias/biossíntese , Regulação Bacteriana da Expressão Gênica , Pseudomonas aeruginosa/genética , Fator sigma/metabolismo , Sacarose/metabolismo , Transcrição Gênica , Ativação Transcricional , Meios de Cultura/química , Deleção de Genes , Regiões Promotoras Genéticas , Pseudomonas aeruginosa/crescimento & desenvolvimento , Pseudomonas aeruginosa/fisiologia , Fator sigma/deficiência , Cloreto de Sódio/metabolismo
5.
Infect Immun ; 79(3): 1176-86, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21189321

RESUMO

OprF is a general outer membrane porin of Pseudomonas aeruginosa, a well-known human opportunistic pathogen associated with severe hospital-acquired sepsis and chronic lung infections of cystic fibrosis patients. A multiphenotypic approach, based on the comparative study of a wild-type strain of P. aeruginosa, its isogenic oprF mutant, and an oprF-complemented strain, showed that OprF is required for P. aeruginosa virulence. The absence of OprF results in impaired adhesion to animal cells, secretion of ExoT and ExoS toxins through the type III secretion system (T3SS), and production of the quorum-sensing-dependent virulence factors pyocyanin, elastase, lectin PA-1L, and exotoxin A. Accordingly, in the oprF mutant, production of the signal molecules N-(3-oxododecanoyl)-l-homoserine lactone and N-butanoyl-l-homoserine lactone was found to be reduced and delayed, respectively. Pseudomonas quinolone signal (PQS) production was decreased, while its precursor, 4-hydroxy-2-heptylquinoline (HHQ), accumulated in the cells. Taken together, these results show the involvement of OprF in P. aeruginosa virulence, at least partly through modulation of the quorum-sensing network. This is the first study showing a link between OprF, PQS synthesis, T3SS, and virulence factor production, providing novel insights into virulence expression.


Assuntos
Proteínas de Bactérias/metabolismo , Regulação Bacteriana da Expressão Gênica/fisiologia , Infecções por Pseudomonas/metabolismo , Pseudomonas aeruginosa/patogenicidade , Fatores de Virulência/metabolismo , Animais , Proteínas de Bactérias/genética , Sistemas de Secreção Bacterianos/fisiologia , Células CACO-2 , Caenorhabditis elegans , Cichorium intybus , Humanos , Folhas de Planta/microbiologia , Infecções por Pseudomonas/genética , Pseudomonas aeruginosa/fisiologia , Quinolonas/metabolismo , Percepção de Quorum/fisiologia , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Virulência , Fatores de Virulência/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...